3.2.6 \(\int \frac {a+b \text {csch}^{-1}(c x)}{x (d+e x^2)^2} \, dx\) [106]

Optimal. Leaf size=515 \[ -\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \text {ArcTan}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2} \]

[Out]

-1/2*e*(a+b*arccsch(c*x))/d^2/(e+d/x^2)+1/2*(a+b*arccsch(c*x))^2/b/d^2-1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1
+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^
2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))
*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/
2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d^2-1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+
e)^(1/2)))/d^2-1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d^2-1/2*b*
polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d^2-1/2*b*polylog(2,c*(1/c/x+(
1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d^2+1/2*b*arctan((c^2*d-e)^(1/2)/c/x/e^(1/2)/(1+1/c
^2/x^2)^(1/2))*e^(1/2)/d^2/(c^2*d-e)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.77, antiderivative size = 515, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6439, 5823, 5821, 385, 211, 5827, 5680, 2221, 2317, 2438} \begin {gather*} -\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 d^2}-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (\frac {d}{x^2}+e\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \text {ArcTan}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} x \sqrt {\frac {1}{c^2 x^2}+1}}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)^2),x]

[Out]

-1/2*(e*(a + b*ArcCsch[c*x]))/(d^2*(e + d/x^2)) + (a + b*ArcCsch[c*x])^2/(2*b*d^2) + (b*Sqrt[e]*ArcTan[Sqrt[c^
2*d - e]/(c*Sqrt[e]*Sqrt[1 + 1/(c^2*x^2)]*x)])/(2*d^2*Sqrt[c^2*d - e]) - ((a + b*ArcCsch[c*x])*Log[1 - (c*Sqrt
[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d^2) - ((a + b*ArcCsch[c*x])*Log[1 + (c*Sqrt[-d]*E^Ar
cCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d^2) - ((a + b*ArcCsch[c*x])*Log[1 - (c*Sqrt[-d]*E^ArcCsch[c*x
])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d^2) - ((a + b*ArcCsch[c*x])*Log[1 + (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[
e] + Sqrt[-(c^2*d) + e])])/(2*d^2) - (b*PolyLog[2, -((c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e]
))])/(2*d^2) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d^2) - (b*PolyLog
[2, -((c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e]))])/(2*d^2) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcC
sch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d^2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5680

Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[(e + f*x)^m*(E^(c + d*x)/(a - Rt[a^2 + b^2, 2] + b*E^(c + d
*x))), x] + Int[(e + f*x)^m*(E^(c + d*x)/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x))), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0]

Rule 5821

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcSinh[c*x])/(2*e*(p + 1))), x] - Dist[b*(c/(2*e*(p + 1))), Int[(d + e*x^2)^(p + 1)/Sqrt[1 + c^2*x^
2], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[e, c^2*d] && NeQ[p, -1]

Rule 5823

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
e, c^2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 5827

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cosh[x
]/(c*d + e*Sinh[x])), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 6439

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx &=-\text {Subst}\left (\int \frac {x^3 \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )\\ &=-\text {Subst}\left (\int \left (-\frac {e x \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{d \left (e+d x^2\right )^2}+\frac {x \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{d \left (e+d x^2\right )}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\text {Subst}\left (\int \frac {x \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )}{d}+\frac {e \text {Subst}\left (\int \frac {x \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )}{d}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}-\frac {\text {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )}{d}+\frac {(b e) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{c^2}} \left (e+d x^2\right )} \, dx,x,\frac {1}{x}\right )}{2 c d^2}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\text {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 (-d)^{3/2}}-\frac {\text {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 (-d)^{3/2}}+\frac {(b e) \text {Subst}\left (\int \frac {1}{e-\left (-d+\frac {e}{c^2}\right ) x^2} \, dx,x,\frac {1}{\sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 c d^2}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}+\frac {\text {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\text {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}+\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\text {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d^2}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d^2}+\frac {b \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d^2}\\ &=-\frac {e \left (a+b \text {csch}^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d-e}}{c \sqrt {e} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d-e}}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 40.57, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)^2),x]

[Out]

Integrate[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)^2), x]

________________________________________________________________________________________

Maple [F]
time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {a +b \,\mathrm {arccsch}\left (c x \right )}{x \left (e \,x^{2}+d \right )^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x)

[Out]

int((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="maxima")

[Out]

1/2*a*(1/(d*x^2*e + d^2) - log(x^2*e + d)/d^2 + 2*log(x)/d^2) + b*integrate(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x
))/(x^5*e^2 + 2*d*x^3*e + d^2*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/(x^5*e^2 + 2*d*x^3*e + d^2*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{x \left (d + e x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/x/(e*x**2+d)**2,x)

[Out]

Integral((a + b*acsch(c*x))/(x*(d + e*x**2)**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d)^2,x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/((e*x^2 + d)^2*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{x\,{\left (e\,x^2+d\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)^2),x)

[Out]

int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)^2), x)

________________________________________________________________________________________